Improved error estimates for a Maxwell-Landau-Lifschitz system

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cauchy problem and quasi-stationary limit for the Maxwell-Landau-Lifschitz and Maxwell-Bloch equations

In this paper we continue the investigation of the Maxwell-Landau-Lifschitz and Maxwell-Bloch equations. In particular we extend some previous results about the Cauchy problem and the quasi-stationary limit to the case where the magnetic permeability and the electric permittivity are variable.

متن کامل

On Transitions to Stationary States in a Maxwell-Landau-Lifschitz-Gilbert System

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

A posteriori error estimates for Maxwell equations

Maxwell equations are posed as variational boundary value problems in the function space H(curl) and are discretized by Nédélec finite elements. In Beck et al., 2000, a residual type a posteriori error estimator was proposed and analyzed under certain conditions onto the domain. In the present paper, we prove the reliability of that error estimator on Lipschitz domains. The key is to establish ...

متن کامل

Implicit a posteriori error estimates for the Maxwell equations

An implicit a posteriori error estimation technique is presented and analyzed for the numerical solution of the time-harmonic Maxwell equations using Nédélec edge elements. For this purpose we define a weak formulation for the error on each element and provide an efficient and accurate numerical solution technique to solve the error equations locally. We investigate the well-posedness of the er...

متن کامل

Improved discretization error estimates for first-order system least squares

We study the discretization accuracy for first-order system least squares (FOSLS) applied to Poisson’s equation as a model problem. The FOSLS formulation is based on an H1 elliptic bilinear form F . Since the order of convergence of the discretization in the L2 and H1 norms depends on the regularity of F , we examine this property in detail. We then use these results together with an Aubin-Nits...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PAMM

سال: 2004

ISSN: 1617-7061

DOI: 10.1002/pamm.200410018